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Abstract

Numerical studies are presented for gas resonant oscillations in a two-dimensional closed tube using the lattice Boltzmann method. A
multi-distribution function model of thermal lattice Boltzmann method is adopted in this work. The oscillating flow of the gas is gen-
erated by a plane piston at one end, and reflected by the other closed end. Both isothermal and adiabatic walls of the closed tube are
considered. Boundary treatments such as moving adiabatic boundary are given in detail. The time dependent velocity, density and tem-
perature at various locations of the tube for various frequencies and wall boundary conditions are presented. Shock waves with resonant
frequency or slightly off-resonant frequencies are numerically captured. From the simulation results, the gas flow and heat transfer char-
acteristics obtained are consistent qualitatively with those from previous simulations using conventional numerical methods.
� 2007 Published by Elsevier Ltd.
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1. Introduction

The lattice Boltzmann method (LBM) was first intro-
duced by McNamara and Zanetti [1,2], and after its devel-
opment during a decade or so, it has emerged as an
alternative and promising numerical approach for compu-
tational fluid dynamics (CFD) and numerical heat transfer
(NHT) [3]. As a derivative of the lattice gas automata
(LGA), the LBM is different from the conventional numer-
ical methods which solving the usual macroscopic govern-
ing equations (e.g. Navier–Stokes equations) for the
conserved fields. Based on the kinetic theory, the LBM sim-
ulates fluid flows by tracking the evolution of particles tak-
ing on a few discrete velocities in discrete space at discrete
time steps. It is fully parallel in nature and can easily model
fluid flows with complicated boundary conditions.That
means the LBM provides a method to obtain streaming
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and heat transferring patterns for complicated systems,
which are difficult to simulate with conventional numerical
methods, from the microscopic and kinetic level.

The understanding of gas oscillating patterns in a closed
tube is of both fundamental and practical importance. To
consider a gas-filled tube driven by an oscillating plane pis-
ton at one end in the neighborhood of the fundamental res-
onant frequency of the gas column, periodic shock waves
can be found travelling back and forth along the tube with
a frequency equal to that of the oscillating piston and
velocity close to that of sound [4,5]. As a result of the shock
waves and oscillating flows, the heat and mass transport in
a resonant tube can be enhanced dramatically compared to
those beyond the resonant band.

Betchov [6] and Chester [7] constructed their theoretical
models for one-dimensional resonant gas oscillations by
asymptotic expansions in term of e. Here e ¼

ffiffiffiffiffiffiffiffiffiffi
pl=L

p
is a

small parameter, l and L are the piston amplitude and tube
length, respectively. Using his model, Chester was able to
predict the shape and strength of the shock waves. More
information about theoretical and experimental studies
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Nomenclature

a thermal diffusivity
c lattice streaming speed
cs sound speed
ci particle speed
e internal energy per unit mass
fi density distribution function
f eq

i equilibrium density distribution function
gi internal energy density distribution function
geq

i equilibrium internal energy density distribution
function

H width of the tube
l piston amplitude
L length of the tube
Nx lattice numbers at x direction
Ny lattice numbers at y direction
p pressure
p0 pressure in the initial state
q heat flux
r coordinate vector
R gas constant
t time
Dt time increment
T temperature
T0 characteristic temperature, temperature in the

initial state

u x component of the velocity
u velocity
wi weighting coefficient in f eq

i and geq
i

Dx lattice spacing
Zi effect of viscous heating

Greek symbols

e parameter defined as e ¼
ffiffiffiffiffiffiffiffiffiffi
pl=L

p
m kinetic viscosity
q density
q0 density in the initial state
P stress tensor
sf momentum relaxation time
sg internal energy relaxation time
x circular frequency
X fundamental resonant frequency

Subscripts
i direction
x, y directions

Superscript

eq equilibrium
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on resonant oscillations can be found from the review of
Ilgamov et al. [8] and the references . In Ref. [8], Ilgamov
et al. found that the discrepancy between theory and
experiments increases with the increase of e, and concluded
that all existing theories are unsatisfactory when e P 0.1.

Specially, some theoretical and experimental studies
aimed at the thermoacoustic effects of the resonant tube.
Merkli and Thomann [9,10] investigated the transition
from laminar gas motion to a turbulent one, and found
the development of temperature and pressure gradients
along the resonant tube. Goldshtein et al. [11] derived a
model of inviscid resonant gas oscillations with an accu-
racy of e2. With their model, such phenomena observed
in experiments as spatial gradients of time-averaged gas
temperature and pressure can be predicted. However, the
agreement between theory and experiment of their model
at large e remains rather poor [5]. Gopinath et al. [12] inves-
tigated theoretically the problem of thermoacoustic stream-
ing in a resonant channel, and clarified the origin of the
time-averaged temperature stratification.

At present, there are a few numerical simulations of gas
oscillations in resonant tubes. However, most simulations
are restricted to solving one-dimensional non-linear
Lagrangian wave equations [13–15], although a more gen-
eral two-dimensional simulation would be more attractive.
This is because the appearance of non-linear shock waves
in resonant oscillations and the small Mach number of
the gas flow require a high-resolution numerical scheme
and a large computing resource.

Most recently, Tang and Cheng [16] solved the two-
dimensional gas resonant oscillation in a cylindrical tube
with e = 0.077 by a new finite volume method with sec-
ond-order kinetic flux-vector splitting scheme for convec-
tive terms, and a third-order Runge-Kutta method for
the time evolution. They claimed that their numerical
results are similar to those from previous studies. Alexeev
and Gutfinger [5] investigated the two-dimensional turbu-
lent gas oscillations and acoustic streaming in resonant
tubes with a finite-difference algorithm supplemented by a
two-equation Wilcox turbulent model, and found that the
direction of gas streaming at resonance is opposite to that
in non-resonant oscillations.

On the other hand, it is well known that the LBM is
capable of simulating acoustic problems [17–20]. Consider-
ing its advantages mentioned above, we adopted the LBM
to study the flow and heat transfer characteristics systemat-
ically in a thermoacoustic refrigerator. In order to simulate
the gas resonant oscillations in a closed tube, using the
LBM is an unavoidable step in this study. However, there
is no open literature in this field. In the present work,
numerical simulations are performed for gas resonant oscil-
lating phenomena in a closed tube using the LBM. Both
isothermal and adiabatic walls are considered in simula-
tions. From the numerical results, shock waves with reso-
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nant frequency or slightly off-resonant frequencies are
numerically captured. The time dependent velocity, den-
sity, and temperature at various locations of the tube for
various frequencies and wall boundary conditions are pre-
sented. The gas flow and heat transfer characteristics
obtained are consistent qualitatively with those from previ-
ous simulations using conventional numerical methods.

In the following sections, the LBM model adopted in
this work is introduced in Section 2. In Section 3, we give
details of the boundary conditions of the LBM. Section 4
introduces the physical model of the gas oscillations in a
tube and presents the results obtained from the LBM sim-
ulations. Finally, a brief conclusion is given in Section 5.
2. The thermal LBM

At present, one of the most popular categories of the
thermal LBM (TLBM) models, which are developed to
treat heat transfer, are the multi-distribution function mod-
els [21–28]. In these multi-distribution function models, an
independent internal energy or temperature density distri-
bution function, besides the density distribution function,
is introduced to solve the temperature field. Compared
with other categories, such as the multi-speed models
[29–31], these multi-distribution function models have a
better numerical stability.

The TLBM model originally derived by He et al. [22] is
used in this study. In this model, the temperature field is
solved with a separate internal energy density distribution
function gi, which is different from the density distribution
function fi used for solving velocity field. The discrete dis-
tribution functions obey a set of lattice Bhatnagar–Gross–
Krook (BGK) equations

fiðrþ ciDt; t þ DtÞ � fiðr; tÞ

¼ � Dt
sf þ 0:5Dt

fiðr; tÞ � f eq
i ðr; tÞ

� �
ð1Þ

giðrþ ciDt; t þ DtÞ � giðr; tÞ

¼ � Dt
sg þ 0:5Dt

giðr; tÞ � geq
i ðr; tÞ½ � � sgDt

sg þ 0:5Dt
fiZi ð2Þ

The variables f i and gi are defined as

fi ¼ fi þ
0:5Dt

sf
ðfi � f eq

i Þ ð3Þ

gi ¼ gi þ
0:5Dt

sg
ðgi � geq

i Þ þ
Dt
2

fiZi ð4Þ

where f eq
i and geq

i are the equilibrium density distribution
function and internal energy density distribution function
respectively; ci is the lattice velocity and i denotes the lattice
direction; t and Dt are the time and time increment, respec-
tively; r is the coordinate vector; sf and sg are the momen-
tum and internal energy relaxation time, respectively. The
term Zi = (ci � u) � [ou/ot + (ci � $)u] represents the effect
of viscous heating, and is discretized as [32]:
Zi ¼
½ci � uðr; tÞ� � ½uðrþ ciDt; t þ DtÞ � uðr; tÞ�

Dt
ð5Þ

where u is the velocity. Moreover, we emphasize that the
viscous heat dissipation and compression work done by
the pressure can be effectively treated in this model. This
is the very reason we choose He et al.’s model in this study.
As the flows considered here are viscid and compressible
with small Mach number, the viscous heat dissipation
and compression work can not be neglected.

For the two-dimensional nine-directional (D2Q9) lattice
with streaming speed c ¼

ffiffiffiffiffiffiffiffiffiffiffi
3RT 0

p
, where R and T0 are the

specific gas constant and the characteristic temperature,
respectively, the equilibrium density distributions are cho-
sen as follows:

f eq
i ¼ qwi½1þ siðuÞ�; i ¼ 0; . . . ; 8 ð6Þ

geq
0 ¼ w0qes0ðuÞ ð7Þ

geq
i ¼ wiqe

3

2
þ siðuÞ �

3ðci � uÞ
2c2

� �
; i ¼ 1; 2; 3; 4 ð8Þ

geq
i ¼ wiqe 3þ siðuÞ þ

3ðci � uÞ
c2

� �
; i ¼ 5; 6; 7; 8 ð9Þ

ci ¼

0; i ¼ 0

c cos ði� 1Þ p
2

� �
; sin ði� 1Þ p

2

� �� �
;

i ¼ 1; 2; 3; 4ffiffiffi
2
p

c cos½ði� 5Þ p
2
þ p

4
�; sin ði� 5Þ p

2
þ p

4

� �� �
;

i ¼ 5; 6; 7; 8

8>>>>>><
>>>>>>:

ð10Þ

siðuÞ ¼
3ðci � uÞ

c2
þ 9ðci � uÞ2

2c4
� 3ðu � uÞ

2c2
; i ¼ 0; . . . ; 8 ð11Þ

where wi is the weighting coefficient and w0 = 4/9, wi = 1/9
for i = 1, 2, 3, 4 and wi = 1/36 for i = 5, 6, 7, 8. The internal
energy density is qe = qRT (in 2D).

The macroscopic density q, velocity u, internal energy
per unit mass e, and heat flux q, are defined in terms of
the particle distribution functions as follows:

q ¼
X

i

fi ð12Þ

qu ¼
X

i

fici ð13Þ

qe ¼
X

i

gi �
Dt
2

X
i

fiZi ð14Þ

q ¼
X

i

cigi � qeu� Dt
2

X
i

cifiZi

 !
sg

sg þ 0:5Dt
ð15Þ

Through the multi-scaling expansion, the continuity,
momentum and energy equations at the Navier–Stokes
level can be derived form Eqs. (1) and (2):

oq
ot
þr � ðquÞ ¼ 0 ð16Þ

oðquÞ
ot
þr � ðquuÞ ¼ �rp þr �P ð17Þ

oðqeÞ
ot
þr � ðqueÞ ¼ r � ðqareÞ þP : ru� pr � u ð18Þ
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where the kinetic viscosity m, the pressure p, the thermal
diffusivity a and the stress tensor P are defined as m = sf

RT0, p = qRT0, a = 2sgRT0 and P = qm($u + u$),
respectively.

Finally, we denote that the lattice Boltzmann equations
(Eqs. (1) and (2)) used in the standard lattice Boltzmann
method with streaming-collision procedure can be viewed
as a special discrete form of the discrete velocity Boltzmann
equation with second-order in time and space.
C4C7 C8

D F

Fig. 1. Schematic plot of the boundary condition.

O

L
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x
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Fig. 2. Schematic description of the resonant tube.
3. Boundary conditions

As proposed by Guo et al. [33] and Tang et al. [25],
both for the velocity and temperature boundary condi-
tions at the wall, the distribution functions are decom-
posed into their equilibrium and nonequilibrium parts.
The equilibrium parts are defined as Eqs. (6)–(9). It
should be noted that if there are some unknown parame-
ters (e.g. the density) at the boundary nodes, we will
replace them by the corresponding parameters at the
nearest nodes of the interior fluid. The nonequilibrium
parts are approximated with a first-order extrapolation
of the nonequilibrium parts of the distribution functions
at the nearest nodes of the interior fluid. It is demon-
strated that the accuracy of these boundary conditions
are indeed of second-order [25].

As an example shown in Fig. 1 for the D2Q9 lattice, the
BOD line lies at the boundary, and the nodes E, A and F

are those lying in the fluid. The post-collision distributions
at the boundary node O, can be written as

fi
þðO; tÞ ¼ f eq

i ðqðAÞ; uðOÞ; tÞ þ ð1� ~sf Þ fiðA; tÞ � f eq
i ðA; tÞ½ �

ð19Þ
gi
þðO; tÞ ¼ geq

i ðqðAÞ; uðOÞ; T ðOÞ; tÞ
þ ð1� ~sgÞ giðA; tÞ � geq

i ðA; tÞ½ � � ~sgsgfiðOÞZiðOÞ ð20Þ

where ~sf is used to replace Dt/(sf + 0.5Dt) for simplicity,
and ~sg to replace Dt/(sg + 0.5Dt). Taking the expression
of fi

þðO; tÞ as an example, f eq
i ðqðAÞ; uðOÞ; tÞ and ðfiðA; tÞ�

f eq
i ðA; tÞÞ are the equilibrium and nonequilibrium parts of

the density distribution, respectively.
For an adiabatic wall, which means T(O) is unknown,

an additional treatment of T(O) is needed. Similar to the
Neumann boundary proposed in Ref. [25], here we give
the expression of the moving adiabatic boundary, where
the heat flux q(O) is zero and the velocity u(O) not zero.
We can use the expression of q (see Eq. (15)), together with
Eqs. (7)–(9) and (20) to obtain the wall temperature T(O)
T ðOÞ ¼
Dt
2

P
i½cifiðOÞZiðOÞ�x þ

P
i¼3;6;7cigi �

P
i¼1;5;8 ð1� ~sgÞ gið½

�
RqðAÞ w1

3
2
þ s1ðuðOÞÞ � 3ðc1�uðOÞÞ

2c2

h i
þ
P

i¼5;8wi 3þ
hn
where [cifiZi]x and u are the x component of the vector
cifiZi and u, respectively. Then, combining with Eq. (20),
we can yield the post-collision distributions at the moving
adiabatic boundary nodes.
4. Results and discussion

In this paper, the LBM is adopted to simulate the gas res-
onant oscillations in a two-dimensional closed tube com-
posed by two parallel plates (Fig. 2). The oscillating flow
is generated by a plane piston at left end (x = 0) with the
velocity u0 = lxsin(xt), and reflected by the other closed
end (x = L). Here l and x are the oscillatory amplitude
and circular frequency, respectively. The initial parameters
of the gas-filled in the closed tube are given as density q0,
pressure p0 and temperature T0. Therefore, the correspond-
ing sound speed of the gas is cs ¼

ffiffiffiffiffiffiffiffi
RT 0

p
in LBM, and the

fundamental resonant frequency of the tube is X = pcs/L.
No-slip boundary conditions for the gas velocity are

imposed at all solid walls. Both isothermal and adiabatic
walls are considered. Corresponding treatments are
described in Section 3. For saving computing resource, a
A; tÞ � geq
i ðA; tÞ� � ~sgsgfiðOÞZiðOÞ

�
siðuðOÞÞ þ 3ðci �uðOÞÞ

c2

i
� uðOÞ

o ð21Þ
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half-domain (0 6 x 6 L, 0 6 y 6 H) is considered during
simulation. Mirror symmetric boundary conditions
[34,35] are imposed at y = 0. The gas oscillations are exam-
ined for e ¼

ffiffiffiffiffiffiffiffiffiffi
pl=L

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
lx=cs

p
¼

ffiffiffiffiffiffiffiffiffiffiffi
0:008
p

. The frequency
range to be considered is in the neighborhood of X.

In simulations, square lattice is adopted. The lattice
numbers are Nx and Ny at x and y directions, respectively.
Fig. 3 shows the mesh refinement study of the density near
the closed end (x/L = 0.99, y/H = 0) with the isothermal
wall at x/X = 1, where the dimensionless time tcs/2L means
the ordinal number of the oscillation period. It should be
noted that the periodically steady state of the gas column
has already been reached at tcs/2L = 40 in this study. From
Fig. 3, it can be found that the discrepancy between
Nx � Ny = 1000 � 100 and 1200 � 120 is not significant.
Thus it may be deduced that Nx � Ny = 1000 � 100 is com-
petent for the problems of this paper. This is used in
computing the results presented. Moreover, in order to
obtained the same physical size L � H from the different lat-
tice sizes Nx � Ny, m and a increase linearly with the increase
of the lattice numbers. For instance, with cs ¼ 1=

ffiffiffi
3
p

, m is set
as 0.06 and 0.1 for Nx � Ny = 600 � 60 and 1000 � 100,
respectively. And the thermal diffusivity is set as a =
v/Pr = v/0.7, where Pr is the Prandtl number.

Figs. 4 and 5 present the time dependent density at the
middle point of the tube (x/L = 0.5, y/H = 0) with the iso-
thermal walls for various frequencies in the neighborhood
of X. Fig. 4 refers to the entire interval 0 6 tcs/2L 6 50
and provides an idea of the overall processes. From
Fig. 4, it can be observed that rapid increases in the oscil-
lation amplitudes take place at all frequencies presented
over an initial period. Then, oscillations of the density
are hardly visible, especially for the frequencies close to
the fundamental resonant frequency. Moreover, it can be
found that the periodically steady states of the system have
already been reached at tcs/2L = 25 for all the isothermal
cases presented. Because of the influence of the walls and
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Fig. 3. Mesh refinement study of the time dependent density near the
closed end of the tube (x/L = 0.99, y/H = 0) with the isothermal walls.
x/X = 1.
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Fig. 5. Temporal variations of the density at the middle point of the tube
(x/L = 0.5, y/H = 0) with the isothermal walls for six frequencies in the
neighborhood of X under the periodically steady states.
the gas viscosity, the maximal amplitude of the oscillating
density corresponds to x/X = 0.97 instead of 1.0.

Fig. 5 calls attention to the oscillation forms of the den-
sity after the periodically steady states have been reached.
It may be seen from Fig. 5 that the waveforms of the den-
sity transform with the change of the frequencies. In partic-
ular, when the frequencies depart from the resonance (x/
X = 0.95 and 1.0), the amplitudes of the density oscillation
become smaller, and the shock waves generated inside the
tube become weaker. When the frequencies are far away
from the resonant frequency (x/X = 0.93 and 1.03), the
waveforms are approximately sine waves. It should be
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noted that because of the symmetry of geometry, two wave
crests of the density in one oscillation period are observed
at the midpoint of the tube.

For comparison with the results in references, Fig. 6
gives the temporal variations of the density near the closed
end (x/L = 0.99, y/H = 0) for eight frequencies in the
neighborhood of X. It can be seen that the transformation
trend of the oscillation forms of the density near the closed
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Fig. 7. Temporal variations of the axial velocity, density and temperature
near the piston (x/L = 0.01, y/H = 0) with isothermal walls. x/X = 0.97.
tube is similar to that at the middle of the tube mentioned
above. Moreover, the pre-resonant oscillation form (such
as x/X = 0.95) is distinctive in that it is adjacent to the
maximum over a period after a pulse-type jump, however,
the post-resonant oscillation form (such as x/X = 1.01) has
a maximum immediately after the jump. These results are
very similar to those shown in Ref. [4,10,36]. As
p = qRT0 mentioned in Section 2, we have p/p0 = q/q0

for He et al.’s model. In other words, the temporal varia-
tions of the nondimensional pressure are same as those of
the nondimensional density. The state equation p = qRT

can be recovered accurately in some recently proposed
compressible LBM models [37].

Figs. 7 and 8 show the temporal variations of the axial
(y/H = 0) velocity, density and temperature at two loca-
tions of the tube (x/L = 0.01 and 0.99) with isothermal
walls at x/X = 0.97. From Fig. 7, it can be seen that the
waveform of velocity is almost sinusoidal with the piston
movement, and a sudden pulse-type change occurs when
the shock wave travels through this location (x/L = 0.01,
y/H = 0). Therefore, the parameters such as density and
temperature increase sharply at the same time. Corre-
sponding temporal parameters near the closed end of the
tube (x/L = 0.99, y/H = 0) are presented in Fig. 8. Similar
phenomena are presented in Figs. 3–5 for adiabatic walls in
Ref. [16].
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near the closed end of the tube (x/L = 0.99, y/H = 0) with isothermal
walls. x/X = 0.97.
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Temporal variations of the velocity and temperature at
x/L = 0.5 and two vertical positions (y/H = 0 and 0.9) with
isothermal walls at x/X = 0.97 are presented in Fig. 9. It
can be seen from Fig. 9 that the amplitudes of both the
velocity and temperature oscillations near the wall
(y/H = 0.9) are smaller than those in the core flow region
(y/H = 0), whenas the phase differences of the velocity
and temperature oscillations between these two regions
are approximate zero. In comparison of Figs. 7–9 (only
for the curves of y/H = 0), the amplitudes of the tempera-
ture near the piston and the closed end of the tube are
almost the same, and the amplitudes of these oscillations
are larger than that at the midpoint of the tube. However,
the amplitudes of the velocity near the piston and the
closed of the tube are much smaller than that at the mid-
point of the tube.

Fig. 10a shows the velocity profiles at xt = 3p/2 in
interval 49 6 tcs/2L 6 50 and various cross sections with
isothermal walls at x/X = 1. Fig. 10b shows the develop-
ment of temperature profiles at x/L = 0.75 in interval
49 6 tcs/2L 6 50 with isothermal walls at x/X = 1. As
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1.00
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/

y/H

π
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2π

Fig. 10. (a) Velocity profiles at xt = 3p/2 and various cross sections and
(b) development of temperature profiles at x/L = 0.75 with isothermal
walls. x/X = 1, 49 6 tcs/2L 6 50.
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Fig. 9. Temporal variations of the (a) velocity and (b) temperature at x/
L = 0.5 and two vertical positions (y/H = 0 and 0.9) with isothermal walls.
x/X = 0.97.
shown in Fig. 10, annular effects exist both in the velocity
and temperature profiles. It is interesting to note that for
the curve x/L = 7/8 in Fig. 10a, the direction of the velocity
near the wall is opposite to that in the core flow region.
This is the characteristic of oscillating flow.

Similar wave structures inside the tube for adiabatic
walls compared with the isothermal case are obtained
numerically (not shown here). However, as there is no heat
loss from the fluid to the walls for the adiabatic case, some
special phenomena about the time dependent temperatures
are observed. A detailed description of the temperatures in
interval 0 6 tcs/2L 6 100 can be found in Fig. 11, where
the temperatures used were averaged over one oscillation
period. It is seen that the temperatures increase with the
time, because the state of the gas column is essentially peri-
odically unsteady. The maximal deviation from T0 corre-
sponds to x/X = 0.97.

Fig. 12a presents the velocity profiles at xt = 2p in inter-
val 99 6 tcs/2L 6 100 and various cross sections with adia-
batic walls at x/X = 1. It shows that annual effects also
exist in the velocity profiles of the adiabatic case.
Fig. 12b presents the development of temperature profiles
at x/L = 0.625 with adiabatic walls at x/X = 1. It shows
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Fig. 12. (a) Velocity profiles at xt = 2p and various cross sections and (b)
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that the temperature variations along the y direction are
small for the adiabatic case.

Finally, the standard LBM (including the model used in
this work) is generally considered to be applicable in the
low Mach number range, so it is limited to flows where
the density variation is small compared to the mean den-
sity, and the influence of the velocity field by the tempera-
ture field is negligible. To simulate the compressible flows
by recovering the gas equation of state into the LBM
model is important and urgent in the further extension of
this work. Further investigations of the resonant tube
and a more complex thermoacoustic refrigerator with com-
pressible LBM model are underway in our group.

5. Conclusion

In this paper, numerical simulations are performed for
gas resonant oscillation phenomena in a two-dimensional
closed tube composed by two parallel plates using the
lattice Boltzmann method. A multi-distribution function
model of thermal lattice Boltzmann method devised by
He et al. is introduced and adopted in this work. Both
isothermal and adiabatic walls of the closed tube are
considered. Boundary treatments such as moving adiabatic
boundary are given in detail.

In simulations, the closed tube is driven by an oscillating
plane piston at one end in the neighborhood of the funda-
mental resonant frequency of the gas column. The time
dependent velocity, density and temperature at various loca-
tions of the tube for various frequencies and wall boundary
conditions are presented. For both isothermal and adiabatic
cases, shock waves are numerically captured when the oscil-
lating plane piston at the resonant frequency or slightly off-
resonant frequencies. In particular, for the isothermal case,
periodically steady state of the gas-filled in the tube is
reached rapidly over an initial period, and the gas oscilla-
tions are visible especially for the frequencies close to reso-
nance. Annular effects both in velocity and temperature
profiles are observed. For the adiabatic case, the state of
the gas remains essentially periodically unsteady, the peri-
odically averaged temperatures increase with the increase
of the time, and the increase speed relates to the oscillation
frequency. Annual effects also exist in the velocity profiles,
and the temperature variations along the vertical direction
are small for the adiabatic case. The gas flow and heat trans-
fer characteristics obtained from the numerical simulations
are consistent qualitatively with those from previous simula-
tions using conventional numerical methods. Study for the
gas resonance oscillations with compressible LBM model
will be our further extension of the present work.

From this study, it can be concluded that the LBM can
be used to obtain streaming and heat transferring patterns
for the resonant oscillating flow in a tube, and it will be a
promising method to investigate more complex phenomena
such as the self-excited oscillations in thermoacoustic
engine.
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